Relational Database Basics Review

IT 4153 Advanced Database

Overview

Database approach
 Database system
 Relational model
 Database development

File Processing Approaches

Based on file systems

 Data are record in various types of files organized in folders (directories)

File types

- Sequential data files
- Name-value pair files
- Spreadsheets or list files
- XML files

Files Processing Problems

Loose and weak structure (a general structure may be imposed but not enforced)

- Difficult to handle complex data
- Low data quality: redundancy and inconsistency

No central management

- Difficult to maintain and share in multi-user environments
- Limited security

Not scalable: cannot handle large quantity of data efficiently

Lack of specialized and standardized data management and processing capabilities

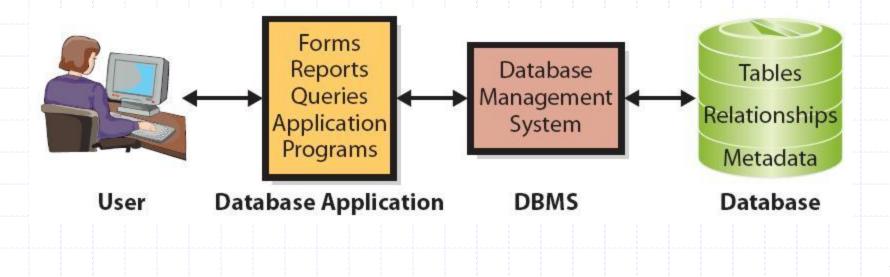
Database Approach

- Database is a structured and self-describing collection of data
 - Structured: structures and rules are consistently and rigorously defined and enforced (integrity)
 - Self-describing: the description of data (data definition, or metadata) is contained within the database
- Centralized management
 - Managed and controlled by specialized programs, called database management systems (DBMS), which provides rich data management functionalities

Advantages and Disadvantages

Advantages

- High data quality, integrity, and consistency
- Reduced data redundancy and application maintenance
- Easy access and sharing
- Scalable
- Improved security
- Specialized and productive management tool


Major disadvantages

- Increased complexity
- Greater impact of failure

Database System

A database system is a complete information system

Basic layers of a database system

Database

A database is a storage place for data

What's in the database?

- Data (tables)
- Metadata
- Other data and structures

- User data
- Metadata
- Indexes and other overhead data
- Application metadata

Metadata

Metadata are data that describe data (data definitions)

Metadata

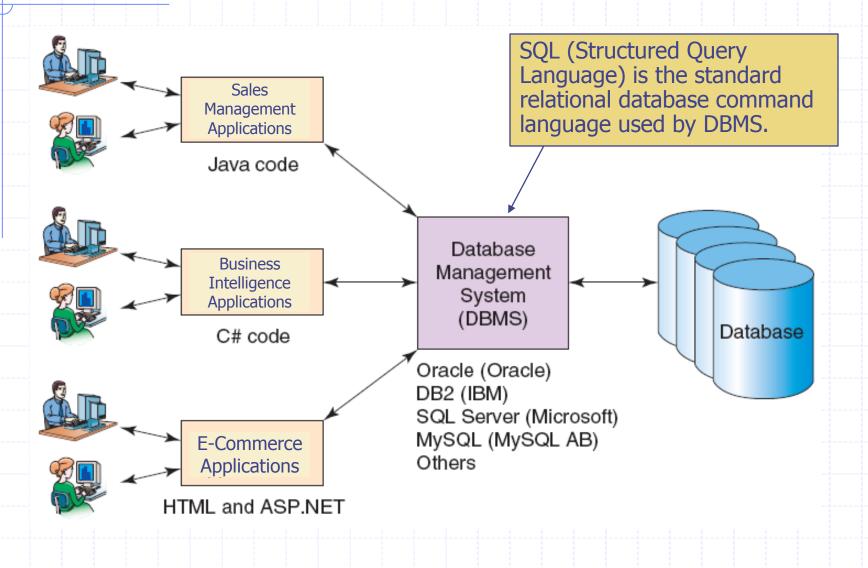
Metadata is always a part of a database.

Metadata defines tables, columns, data types, keys (relationships), constraints, etc.

USER_TABLES Table

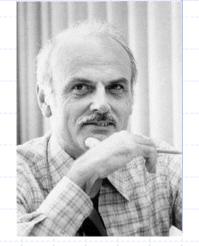
TableName	NumberColumns	PrimaryKey
STUDENT	3	StudentNumber
CLASS	4	ClassNumber
GRADE	3	(StudentNumber, ClassNumber)

USER_COLUMNS Table


C	ColumnName	TableName	DataType	Length (bytes)
S	StudentNumber	STUDENT	Integer	4
L	astName	STUDENT	Text	25
F	FirstName	STUDENT	Text	25
E	EmailAddress	STUDENT	Text	100
C	ClassNumber	CLASS	Integer	4
٩	Name	CLASS	Text	25
ד	Гerm	CLASS	Text	12
5	Section	CLASS	SmallInteger	2
* s	StudentNumber	GRADE	Integer	4
C	ClassNumber	GRADE	Integer	4
C	Grade	GRADE	Decimal	(2, 1)

Database Management System

DBMS serves as a controller (gatekeeper) for databases


- DBMS provides common functionalities and interfaces for managing and controlling database activities, such as
 - creating and maintaining databases and other structures
 - reading, updating and deleting data
 - data backup and recovery
 - controlling concurrency, consistency, and enforcing other rules
 - providing security

Enterprise Database System

Relational Model

Edgar F. Codd (IBM), 1970

One sentence to summarize relational database model (extremely brief):

Data are organized in *relations* (tables), which are linked by *keys* (constraints)

Relation

- A relation is a two-dimensional table that has some specific characteristics:
 - 1. The table consist of rows and columns
 - 2. Rows contain data about entity instances
 - 3. All values in a row describes the same entity instance
 - 4. Columns contain data about attributes of the entity
 - 5. All values in a column are of the same kind
 - 6. Each row is distinct
 - 7. A cell of the table holds a single value
 - 8. Each column has a unique name
 - 9. The order of the rows is unimportant
 - 10. The order of the columns is unimportant

Terminology Contrast

Database industry	Table	Row	Column
Academic	Relation	Tuple	Attribute
File processing	File	Record	Field

Key

A key is one or more columns of a relation that is used to uniquely identify a record

- Primary key
- Candidate key
- Alternate key
- Surrogate key
- Composite key
- Foreign key

Candidate Key/Primary Key

Candidate key

- The minimum set of column(s) that uniquely identifies a single record (row)
- Each value in this column is unique in this relation

Primary key

- Primary key is a column/attribute that is used to uniquely identify a record
- Is one of the candidate keys chosen to be the identifying key; others become alternate keys
- Each value of this key column uniquely identifies a single record (row)
- There is only ONE primary key for a table

Composite Key

Composite key

- A composite key contains two or more attributes (columns)
- All keys can be composite keys

Example:

- "FirstName" + "LastName"
- "FirstName" + "LastName" + "BirthDate"
- "FirstName" + "LastName" + "BirthDate" + "BirthCity"

Artificial Primary Key/Surrogate Key

Sometimes it is difficult to find a natural attribute as a primary key, or it is difficult to use a composite key.

A column is created arbitrarily and assign each record a unique number/id

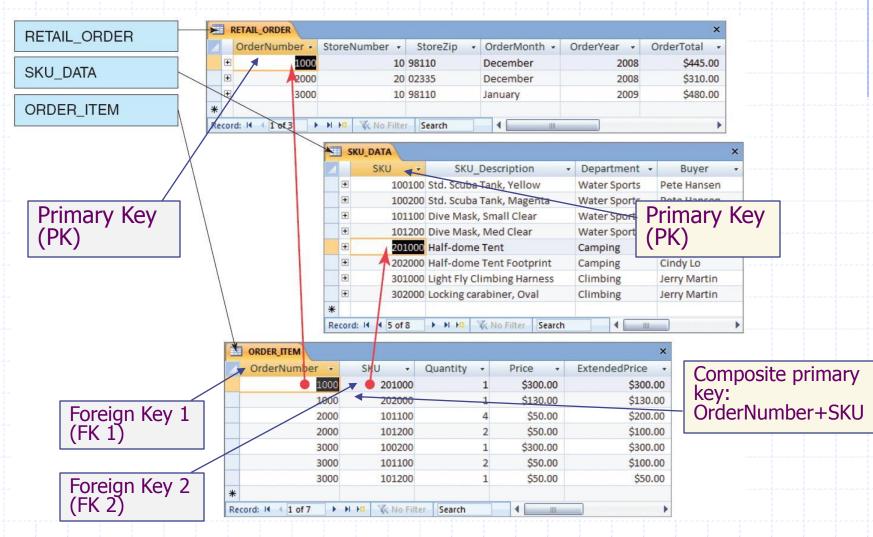
Product Number, Product Id, Movie Id, Actor Id, etc.

					<u></u>
	AdviserID	AdviserName	Department	Phone	Office
▶ ±	1	Johnson	Biology	236-8879	Sci-123
Surrogate Primary	2	Wu	Chemistry	236-0091	Sci-260
Key: the id does 'not really mean	3	Horan	Math	236-0098	AR-45
anything.	(AutoNumber) d: 💶	1 D Often s	such IDs will erated by se systems.		

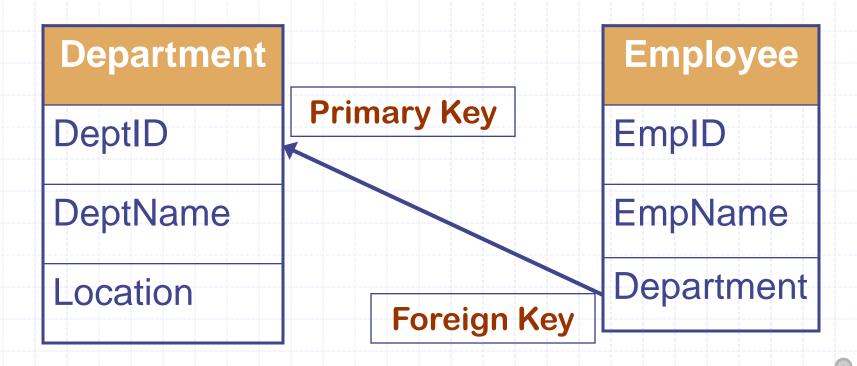
PK Selection Guidelines

Do not use a field whose value is frequently changed as PK

Look for single-attribute PK first

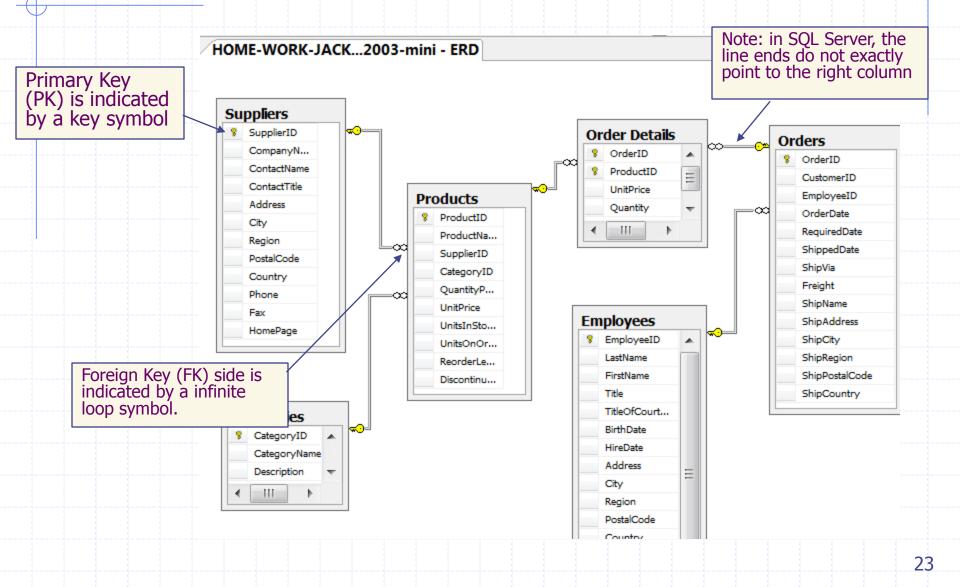

If a PK contains more than 3 columns, consider a surrogate key

Don't be limited to sample data; think beyond and consider possible scenarios and requirements


Relationship and Foreign Key (FK)

- Relationship is how tables (relations) are linked
 - It is defined by the *foreign key (FK)* constraint
- A foreign key references a primary key (or any other unique keys) in another table
 This *pair* of keys are of the *same kind* (may be of different name)

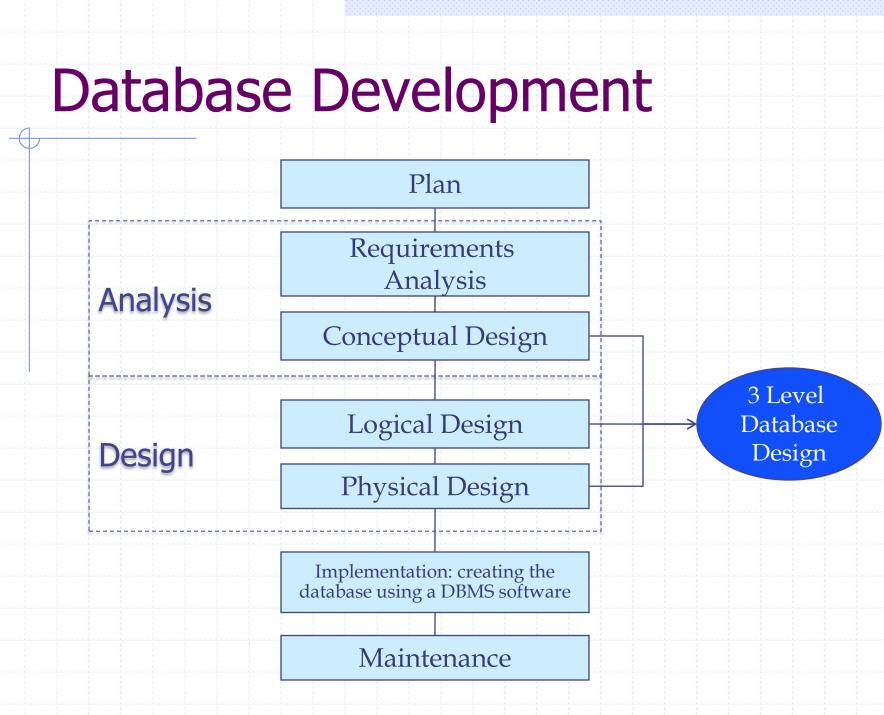
Relationship and FK Example



Foreign Key Example

Primary Key and Foreign Key are of the same type (string, number, etc.) and length, but they do not necessarily have the same name.

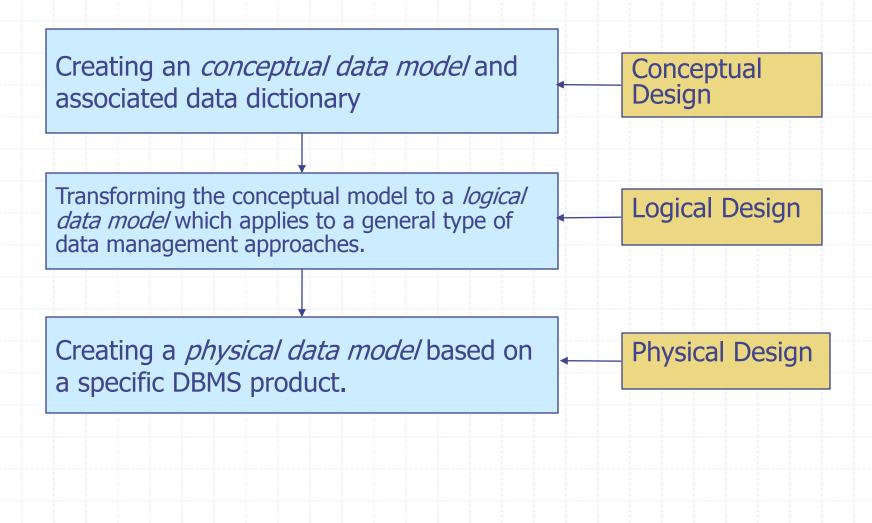
Relationship in SQL Server Database


Schema in Relational Databases

Schema is the structure described in a formal language supported by the database management system (DBMS)

It's a kind of metadata

Relational database schema commonly defines


- Tables: name, primary key
- Columns: name, data type, size, value range, etc.
- Constraints: all kinds of keys
- Other structures

Requirement Analysis

- Requirements describe what a system should be or do
 - Functional vs. non-functional requirements
 - Process vs. data requirements
- Issues in requirements engineering
 How to obtain requirements?
 How to record/represent requirements?

3 Level Database Design

Data Model

- A model is a general and abstract representation of something more complicated and detailed
 - Process model
 - Data model
 - UML model

A data model is a general and abstract representation of the structure of data

- Conceptual
- Logical
- Physical

Conceptual Modeling/Design

Conceptual data model

- A high level representation of the reality based on human understanding
- It is abstract, simple, yet meaningful
- Not tied to any computing technologies

Examples

- Entity Relationship Diagram (ERD)
- Semantic data model
- Concept diagram
- Data structure diagram

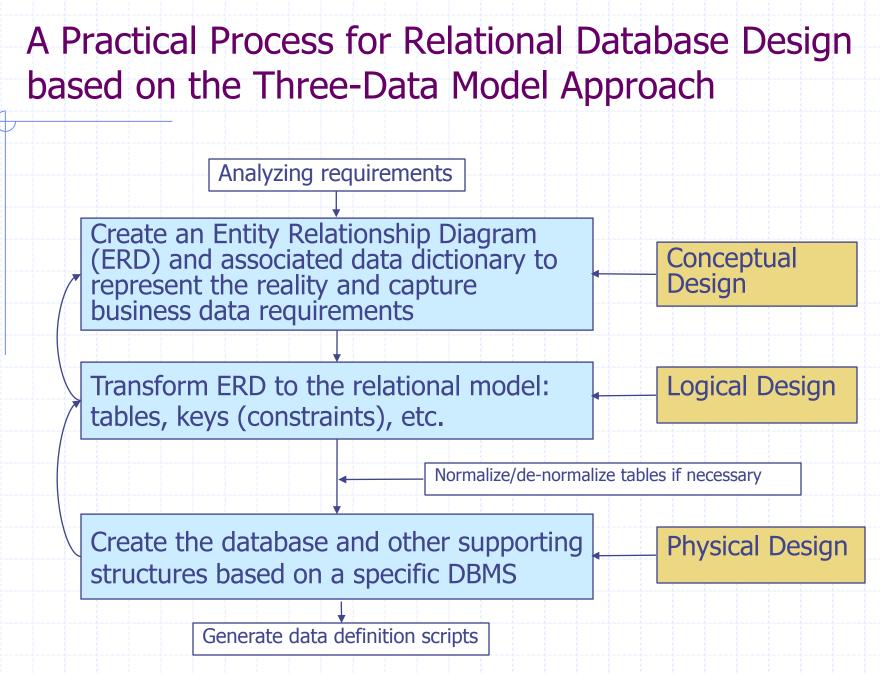
Logical Modeling/Design

Logical data model

- A specific data structure that organizes data following specific rules (logics); for example, mathematical or computing rules
- It is more detailed, structured, actionable and has specific rules
- Yet it is implementation (product) independent

Examples

- Relational data model
- Object-oriented data model
- Hierarchical data model (XML)


Physical Modeling/Design

Physical data model

 Based on a specific implementation (a software product), which implements the corresponding logical data model and adds more operational details

In database design

- More details are added to relational models that directly support the creation of the database in a certain database product
- DBMS product specific: data types, storage methods, DBMS capability, proprietary functions and rules, etc.
- Including lower level details and other DBMS structure, such as index, partition, cluster, storage, etc.

Summary

Key concepts and terms

- File processing vs. database processing
- Database features, advantages, and disadvantages
- Database, database system, DBMS, database application
- Data, metadata, database schema
- Oracle, SQL Server, DB2, MySQL
- Relation (and its 10 features)
- Row, column, record, field, attribute
- Key, primary key, candidate key, surrogate key, composite key, foreign key
- SQL

Key concepts

- Three data models and examples
 - Conceptual, logical, physical
 - ERD
 - Relational model
- Three-level database design method
 - Conceptual design
 - Logical design
 - Physical design
- Key skills
 - Identify/design the primary key, composite primary key, candidate keys, and foreign keys of a given table/relation.

Good Readings and Resources

Database system

- http://en.wikipedia.org/wiki/Database
- http://en.wikipedia.org/wiki/Database management_system

Relational model

http://en.wikipedia.org/wiki/Relational model

The database development life cycle

http://openlearn.open.ac.uk/mod/oucontent/view.php?id=399373

Data modeling 101

<u>http://www.agiledata.org/essays/dataModeling101.html</u>

Data model

<u>http://en.wikipedia.org/wiki/Data_model</u>

The database report: latest database industry news

<u>http://www.tdan.com/featured_columns/db_report.php</u>